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The flow field in a two-dimensional mixing layer, highly disturbed by a sinusoidally 
oscillating flap, was mapped in order to estimate the significance of the nonlinear 
processes associated with the large coherent structures existing in this flow. A mixing 
layer which does not diverge linearly in the direction of streaming is loosely defined 
as being highly disturbed. Two velocity components were measured throughout the 
flow field using a rake of X-wire probes. Streaklines were calculated from the phase- 
locked measured dat,a and were compared to pictures of smoke injected into the flow, 
creating a link between flow visualization and quantitative experimental results. 
The phase-locked vorticity and the Reynolds stresses were calculated from these 
measurements. 

It was determined that fluctuations, locked in phase with the disturbance 
frequency, were not only responsible for the fast initial growth of the mixing layer 
but also for its contraction farther downstream (the occurrence of regions I and I1 
in the parlance of Oster & Wygnanski 1982). The resumption of the growth of the 
mixing layer in region I11 is not controlled by the phase-locked oscillations. The first 
subharmonic of the imposed frequency was insignificant everywhere, and vortex 
amalgamation was not observed by visual means. 

Detailed comparisons between experimental results and theoretical calculations, 
based on a linear stability model, were carried out. The theory predicted very well 
the normalized, cross-flow distribution of any quantity that was measured, but failed 
to predict the amplification rates of these quantities in the direction of streaming. 

1. Introduction 
The mechanism responsible for the growth of the plane turbulent mixing layer 

with downstream distance remains an enigma in spite of the many attempts to 
resolve it. There is little doubt that the spreading rate of the mixing layer is 
intimately related to the large coherent structures present in this flow (Brown & 
Roshko 1974), but a quantitative definition of these structures, their contribution to 
the Reynolds stress and, consequently, the mean velocity field is still unknown. 
These structures take the form of quasi-two-dimensional vortices, but knowledge of 
the vorticity distribution associated with them is sketchy since conditionally 
sampled data are not precisely repeatable (Browand & Weidman 1976; Hussain 
1983). Vortex interactions seem to be responsible for most of the cross-stream 
momentum transfer, and the nature of these interactions is described in a qualitative 
manner commonly referred to as ‘pairing ’ (Winant & Browand 1974). Nevertheless, 
the persistence of the large vortices over a vast range of Reynolds numbers and their 
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perseverance regardless of the various attempts to destroy them (Wygnanski et al. 
1979; Browand & Ho 1983) suggest that  they play a central role in the evolution of 
the mixing layer. This realization spurred numerous experimental and theoretical 
research activities. 

The turbulent mixing layer has been artificially excited (Oster et al. 1978; Oster & 
Wygnanski 1982; Ho & Huang 1982; Fiedler & Mensing 1985) for the purpose of 
elucidating and controlling the entrainment and growth mechanism. Vortex pairing 
was modelled by Patnaik, Sherman & Corcos (1976), Acton (1976), Ashurst (1979), 
Riley & Metcalfe (1980), Corcos & Sherman (1984) and, most recently, by Inoue & 
Leonard (1987). I n  most of these predictions, spatial periodicity was assumed in 
order to simplify the calculations which consider a temporal evolution of the flow; 
the results resemble, a t  least qualitatively, observations made in the laboratory 
using a variety of flow visualization techniques. 

The evolution of the large eddies is also predicted from hydrodynamic stability 
theory. In  laminar flows, where the mean velocity profile represents the solution of 
the equations of motion, one may determine the character of the disturbances 
resulting from the instability of the flow field. Such an analysis was done by Michalke 
(1964, 1965), who predicted the temporal and spatial growth of perturbations in an 
inviscid two-dimensional mixing layer. The mean velocity profile used in the 
calculations was represented by a hyperbolic-tangent function. Monkewitz & Huerre 
(1982) compared the stability of the ' tanh ' profile with the profile resulting from the 
exact solution of the boundary-layer equations while investigating the influence of 
the velocity ratio on the spatial instability of the mixing layers. They found that the 
maximum amplification rate of the perturbation is approximately proportional to 
the parameter R = (U, - U,)/(U, + Ul) ,  while the shape of the velocity profile was less 
important. 

The application of the linear stability theory to turbulent flows is not 
straightforward, because there is no steady velocity field in existence upon which a 
perturbation may be superimposed. One tends to select the mean velocity profile as 
being representative on the average, recognizing the possibility that, a t  any instant 
in time, the actual flow may only bear a slight resemblance to the mean. 
Nevertheless, knowing that the random changes in the mean velocity occur on a 
timescale that is short in comparison with the period associated with the large 
coherent structures, and assuming that the kinetic energy exchange between largely 
disparate scales is negligible, Gaster, Kit & Wygnanski (1985, hereinafter referred to 
as GKW) applied the inviscid linear stability theory with a large measure of success. 
They modelled the development of normal modes in a slowly divergent, turbulent, 
mixing layer by expanding the inviscid equations in multiple scales in a way similar 
to the one used by Bouthier (1972) and by Crighton & Gaster (1976). The streamwise 
velocity component of the computed eigenfunctions agreed well with experimental 
results, but the quantitative comparison of the growth rates was rather poor. Since 
the relative merit of the stability approach over direct vortex simulation is being 
questioned, one of the aims of this investigation was to extend the detailed 
comparison with linear stability theory to quantities not hitherto compared (i.e. the 
lateral velocity component, the phase-locked (u'w') product, and the spanwise 
vorticity distributions) and to determine the limitations of the linear approach by 
exciting the flow a t  high amplitudes. 

Although large coherent structures were discovered in this flow (Brown & Roshko 
1974), knowledge of the ensuing velocity and vorticity fields induced by these 
structures is lacking, because the primary information available is based on flow 
visualization rather than on quantitative measurements. Therefore, a second aim of 
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this investigation was to develop a quantitative tool for assessing the dynamical 
significance of some visual observations. This was attained by calculating the 
streakline patterns from phase-locked velocity measurements. Provided the 
reconstructed structures agree with visual observations, then the same quantitative 
data can be used for correlating visual observations which have special significance 
with the phase-locked vorticity, the (u’v’) product, and any other quantity of 
interest. 

2. A brief description of the experimental procedure 
The experiments were conducted in the mixing-layer facility described by Oster 

& Wygnanski (1982); the velocity of the slower stream was 6 m/s;  the parameter 
R = (U, - U l ) / ( U ,  + U,) was 0.25; and a representative Reynolds number based on 
the velocity difference and an average momentum thickness was Re, = 5000. The 
excitation was produced by a flap oscillating a t  a frequency of 44.5Hz, and the 
measurements were taken with a rake of 7 X-wires (i.e. 14 channels of anemometry) 
operated a t  a constant temperature and calibrated in a manner described by Oster 
& Wygnanski. The streamwise (u) and the transverse (v) components of the velocity 
vector were measured at  80 cross-sections in the flow, starting from a distance 
X = 200 mm downstream of the flap, a t  intervals of 20 mm. The velocity a t  each point 
was sampled a t  2.048 kHz for a period of 250 ms (i.e. 512 data points were stored per 
record per channel) and recorded on tape; 100 records were used for averaging 
purposes. The total averaging time was therefore 25 s, which is approximately 
equivalent to  1000 cycles of the excitation. In order to explore the generation of the 
phase-locked subharmonic frequency (perhaps resulting from the pairing process), 
16 channels of data were recorded simultaneously ; 14 channels of anemometry, 
1 channel of the sinusoidal signal activating the flap, and an additional channel of a 
synchronized square-wave signal produced by an electronic frequency-dividing 
network (i.e. the frequency of the square wave is precisely one-half of the flap 
excitation frequency). The square wave and the sine wave were used independently 
to obtain phase-locked averages. A fast-Fourier-transform algorithm was used to 
calculate the power spectra and the cross-spectra of the u’v’ product a t  various 
locations in the flow. 

3. The mean velocity in the highly excited shear layer 
The flow is described statistically by averaging the data obtained a t  each location 

with respect to time. The mixing layer width, b, was estimated from the mean 
velocity profile measured at each cross-section as follows : 

= (‘0.95- yO.lO), 

where Yo.95 and Yo,,, are the lateral coordinates a t  which (D-Ul ) / (Uz -Ul )  = 0.95 
and 0.10, respectively. The momentum thickness 6, 

m 

6 =  (U,-Ul)-z  (U, -O)(B-U,)dY,  

was also computed. The dependence of b and 6 on X is shown in figure 1, and the 
variation of Yo,95, Yo,5, and Yo.l with the distance from the splitter plate is plotted in 
figure 2. The dense grid of data points was necessary in order to achieve satisfactory 
resolution for the calculation of streaklines. Unlike the undisturbed and the slightly 

s_, 
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FIGURE 1. The variation of the momentum thickness, 8, and the width of the mixing layer, b,  

with distance from the splitter plate. 
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FIGURE 2. The variation of Yo,,,, Yo,,,, and Yo,,, with distance from the splitter plate. 

excited turbulent mixing layers (GKW), the highly excited mixing layer does not 
spread linearly with X .  Three distinct regions can be recognized in this case: 

( a )  Region I ( X  < 560 mm) in which the momentum thickness increases with 
increasing distance from the splitter plate. Most of region I ( X  < 500 mm) is 
characterized by a linear growth of the momentum thickness having a slope of 
de/dX = 0.0265. 
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FIGURE 3. A comparison between the normalized mean velocities near the slower stream in 
regions I and 111. 

(b) Region I1 (560 < X < 840 mm) in which the width of the mixing layer actually 
decreases. 

( c )  Region I11 (X > 840 mm) in which the mixing layer resumes its linear growth, 
but a t  a much slower rate (dB/dX = 0.0071). At X > 1500 mm, the momentum 
thickness of the excited shear layer approaches the natural value of 6' measured by 
Oster & Wygnanski (1982). 

Two transition subregions, which will be discussed later, separate the three clearly 
identifiable regions. A similar behaviour of the strongly disturbed mixing layer was 
described by Oster & Wygnanski (1982). 

The mean velocity profiles scaled by the local momentum thickness are self- 
similar in region I and in region 111. The actual shape of the profiles changes from 
region to region, particularly on the low-speed side of the flow (figures 2 and 3) 
where 

[ig] > [idol -- for u > u,. 
0 dY region1 0 dY region111 

The difference in the shape of the mean velocity profiles cannot be attributed to an 
experimental inaccuracy and must stem from the dynamics of the energy- 
containing eddies. It should be noted that other definitions of the width of the mixing 
layer, such as the maximum-slope (or vorticity) thickness 8, = (U, - U,)/(dU/dY),,, 
(Brown & Roshko 1974), are not sensitive to the variations in the shape of the mean 

velocity profiles. 
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FIGURE 4. The lateral distributions of normalized amplitudes and phases of the ensemble-averaged 
fluctuations measured at X = 200 mm and filtered a t  the excitation frequency. (a)-(c) show the 
amplitudes of ( u ’ ) ,  (v’),, ( a),; and ( d )  is the cross-product (u’v’),. ( e ) - ( g )  show the phase of 
(u’),, (v’),. (Q’),, and (h)  is the mean velocity profile measured at this X-location. The solid lines in 
(a)-(g) represent a theoretical prediction while the triangular symbols represent experimental 
data. 

4. The applicability of linear stability theory to region I 
The linear, inviscid stability theory provides a powerful tool in modelling the 

development of slightly disturbed flows. GKW applied this model to a turbulent, 
slowly diverging, mixing layer and compared the theoretical calculations for the 
streamwise velocity component with experimental results. Although the lateral 
distributions of phase angles and the normalized amplitudes showed good agreement 
with the model, the predicted amplification rate exceeded the experimental 
observations. A partial purpose of this experiment was to increase the excitation 
level until the harmonic distortion became significant and dO/dX was no longer 
constant throughout, and to observe the shortcomings of the linear theory as it was 
applied to region I. The measurements were also extended to include two velocity 
components from which phase-locked vorticity and the ( - u’w’) product were 
calculated. All measurements were compared with the theoretical calculations 
described by GKW. The shape of the normalized mean velocity profile was almost 
identical in both investigations over the distances of interest and, therefore, the 
functional description of the profile was retained ; the rate of spread (dO/dX) used in 
the present calculations was different, however. Some of the notation used in figures 
4-6 was defined by GKW ; in particular, the variable E describes a dimensionless 
streamwise coordinate which also incorporates the slight variation of the thickness 
of the mixing layer in the direction of streaming (see equation (5.3) of GKW). This 
variable is equal to unity where the mixing layer is neutrally stable with respect to 
the imposed circular frequency p. The normalized lateral distributions of the 
amplitudes of (u’),, (v‘)f ,  (Q‘), = a(u’),/aY -a(w’),/aX at theexcitation frequency 
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FIGURE 5. As for figure 4 but measured and computed for X = 300 mm. 
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FIGURE 6. As for figure 4 but measured and computed for X = 400 mm. 

and their respective phase angles are plotted in figures 4-6 for X = 200, 300, and 
400 mm (g = 0.293,0.543,0.793, respectively). The mean velocity profile drawn to 
the same scale is plotted on these figures for comparison. The distributions of the 
spanwise vorticity component were computed by numerical differentiation of the 
neighbouring phase-locked velocity vectors which were Fourier transformed after 
the differentiation. 
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The triangles in all the figures represent experimental results, while the theoretical 
predictions at a corresponding dimensionless streamwise distance are marked by 
solid curves. The amplitude distribution of any quantity Q in figures 4-6 was 
normalized by the local integral J -“, Qd7, where 7 = ( Y  - Yo 5)/0, The phase 
distributions were matched a t  a single arbitrary point a t  q = 0. The good agreement 
between all the calculated and measured quantities indicates that the linear inviscid 
theory serves as a good first step in predicting the nature of the disturbances in 
region I of a turbulent mixing layer. 

At X = 300 mm, the distribution of (zi ’ ) ,  has a strong, but narrow peak around 
’1 = 0, flanked by two lobes having a maximum amplitude equivalent to 25 YO of the 
p a k  and extending to 7 = k 3. At S = 300 mm, the side lobes approach 50 Yo of the 
peak and, a t  X = 400 mm, they are equal to it. The lateral distribution of (2)’), is 
broad and retains its general shape a t  all distances considered. The lateral 
distribution of ( ~ ’ 2 1 ‘ ) ~  is very narrow and is concentrated around 7 = 0. A statistical 
approach to turbulent flow would suggest that the fluctuations in u and tj are 
uncorrelated, but according to linear and inviscid stability theory, the perturbation 
stream function $ decays exponentially with z’ whenever d2U/dY2 -+ 0, resulting in 
a rapid decay of the second-order product (u’v‘), in the lateral direction (i.e. 
(u‘ri‘), = -a  cay, where a is the cigenvalue whose real part corresponds to the 
wavenumber). The measured and the calculated vorticity perturbation profiles have 
a minimum a t  or near 7 = 0 where 0” vanishes. According to the linear inviscid 
stability model, the perturbation vorticity ( S Z ’ ) ,  is given by 

17’’ 

and therefore it has to vanish whenever U” = 0, provided either a or p is complex. 
In the neutral case ([ = l ) ,  the ratio a” / (U-P/a)  does not vanish whenever 
(c‘; -/3/a) + 0, and the lateral distribution of vorticity changes from having two vor- 
tex cores, separated by a minimum corresponding to the location at  which U” = 0, 
to having a single vortex core a t  the same lateral location (Michalke 1965). The uni- 
fication of thc two vorticity cores a t  the excitation frequency may be synonymous 
with the pairing process, and it occurs experimentally a t  S % 500 mm. A detailed 
discussion of pairing is presented in Wygnanski & Weisbrot (1988) 

The overall amplification of the longitudinal velocity in the streamwise direction 
is represented by s-“, I(u’),( dy and shown in figure 7 (a ) .  The corresponding integral 
for the lateral velocity component in figure 7 ( b ) ,  while the spanwise vorticity 
perturbation is shown in figure 7 ( c ) .  All the figures are plotted on semilogarithmic 
coordinates in which the abscissa is the dimensionless streamwise coordinate 5 (for 
this case. the distance S mm = (4005+ 83) ; see GKW for details) and the ordinate is 
the local value of the integral normalized by its local value a t  the first station. The 
triangles represent the experimental data, while the theoretical values are plotted by 
solid curves 

Two of the three integrals calculated theoretically increase monotonically with X, 
but J-“, ISZ’I, dy decreases for X < 370 mm, where it reverses its trend and starts to 
increase with increasing S. The measured amplitudes of the two velocity components 
also increase with S,  but a t  a considerably slower rate. The experimental and the 
theoretical integrals of 121’1, increase much more rapidly with S than the 
corresponding integrals of [cf. figure 7 ( a )  with figure 7(b)]. The integral of 
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the measured longitudinal velocity component tends to decrease toward the end of 
the domain of comparison. 

The vorticity amplitude, integrated across the flow, decreases rapidly with X for 
X < 260 mm ; i t  then remains constant over a short distance before decreasing again 
at  X > 320 mm. The slopes of the measured and predicted integrals of vorticity have 
an opposite sign over the latter part of the domain of comparison. The discrepancy 
betwen the high amplification rates predicted by the linear model and the relatively 
low amplification rates realized in the experiment deserves special attention in view 
of the excellent agreement between the normalized shapes of the theoretical and 
experimental eigenfunctions. 

The linear model used is based on the assumption that the divergence of the mean 
flow is decoupled from the maximum attainable amplitudes of the imposed 
perturbations. It is further assumed that the divergence of the excited shear layer is 
slight and represents a weak modification to the parallel stability model. The 
interaction between the large (externally excited) coherent structures and the 
background turbulence was not considered, This is not a severe handicap in region 
I where the turbulent energy production accounts for less than 25% of the total 
while the remaining 75% is attributed to the phase-locked fluctuations at the 
disturbance frequency and its first harmonic. The contribution of the second-order 
products, not accounted for in the present analysis, may actually be very significant 
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FIGURE 8 (a, b ) .  For caption see facing page. 

and will be discussed later. GKW estimated that 45% of the overall level of the 
streamwise velocity fluctuations is concentrated a t  the excitation frequency which, 
in the context of the present experiment, means that at 6 = 0.786 where the level of 
u'/(U,- U,) x 18 %, the coherent fluctuation levels are approximately equivalent to 
8 % of the velocity difference and thus the linearization of the equations of motion 
may not be justified. 
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FIGURE 8. ( a )  The production of energy integrated across the flow. ( b )  The temporally averaged 
and ensemble-averaged amplitudes of u’, (u), u‘, and (d) integrated across the flow. (c) The 
amplitudes of ( u ’ ) ~ ,  ( u ’ ) ~ ~ ,  (v’),, and ( u ’ ) ~ ~  integrated across the flow. 

5. The intensity of the fluctuations, the Reynolds stress, and their 
respective spectral distributions 

The Reynolds stress (7 = -pu’zl’) is linked to the mean momentum equation and 
to the mean kinetic-energy equation ; therefore, changes in the distribution of -u’zr’ 
are associated with changes in the momentum thickness 6’ and with the exchange of 
energy between the fluctuations and the mean motion. The overall energy production 
term can be subdivided into a phase-locked (coherent) term and a random 
(turbulent) term. The reader is referred to Hussain’s (1983) article discussing the 
triple velocity decomposition. 

The production of energy integrated across the flow is shown in figure 8 ( a )  as a 
function of the streamwise distance. The overall production term (marked by crosses) 
and the phase-locked production term (obtained from the product - (u’z~’) do/dY 
and marked by triangles) are plotted together in order to relate the energy 
production and the Reynolds stress to the divergence of the shear layer. The 
corresponding amplitudes of the phase-locked u’and v’ fluctuations integrated across 
the flow are shown in figure 8 ( b ) ,  while the integrals of these fluctuations at the 
excitation frequency and its first harmonic ( 2 f )  are plotted in figure 8 ( c ) .  These plots 
are helpful in delineating the most significant terms contributing to the failure of the 
linear model and will be discussed later. 

5.1. Region I 
A typical transverse distribution of Reynolds stress measured in the portion of region 
I in which d6’ldY is constant (i.e. S < 500 mm) is shown in figure 9. The data are 
comparcd with the phase-locked - (u‘z)‘) product, marked by triangles on t’he same 
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FIGURE 9. The transverse distribution of (a )  Reynolds stress: +, -m/(U2-lJl)2;  V, -(u'v')/ 
(U,  - U,)' ; ( b )  the cross-spectra of u'v' : LYJ( U, - IY,)~ ; and (c, d ) the power spectra of u' and v' : 
Suz / (Uz -Ul )2 ;  S , ~ / ( U , - U l ) 2 ,  at  X = 280 mm. 

figure ; the latter obviously accounts for most of the Reynolds stress. Temporally 
averaged and phase-locked-averaged energy production terms behave in a similar 
manner, suggesting that the flow is governed by the phase-locked fluctuations. 
Graphs representing the cross-spectra measured a t  four lateral locations (7 = 2,1,0, 
- 1) a t  the same streamwise distance show that the disturbance frequency dominates 
the flow in spite of the fact that  the first harmonic may also be detected. Higher 
harmonics do appear in the power spectra of the longitudinal and lateral velocity 
components, but they are not sufficiently strong or sufficiently correlated to influence 
the Reynolds stress. 

The harmonic distortion, defined as the ratio between the energy contained in the 
harmonic frequency to the energy contained a t  the excitation frequency, may be 
deduced from figure 9. The harmonic distortion of the streamwise component of 
velocity a t  X = 200 mm and ( Y  - YJ/O = 2 is approximately 0.06, and it increases 
by an order of magnitude between X = 200 mm and X = 400 mm a t  the outer 
peripheries of the shear layer; it does not increase a t  ( Y  - Yo)/8 = 0. The harmonic 
distortion of the lateral velocity component increases by a factor of 2 over the same 
distance and does so uniformly across the shear layer. The initial increase in the 
harmonic distortion with downstream distance may not necessarily imply that the 
nonlinear terms in the equation of motion are important in region I. It may simply 
indicate that the harmonic content introduced inadvertently by the flap amplifies 
linearly a t  a faster rate than the fundamental, because the mixing layer is initially 
thin. This suggestion, however, can easily be refuted because : 

(i) The integrated amplitudes of lutl and Ivifl keep increasing throughout 
region I (figure 8 c )  in spite of the fact that, according to the linear model, 
their amplification should have ceased at X = 300 mm. At this location, the shear 
layer became neutrally stable to the harmonic frequency. 
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FIGURE 10. As figure 9 but at X = 560 mm. 

(ii) The integrated amplitude of (dlf increases in region I by a factor of 2.3 from 
the first cross-section measured a t  X = 200 mm to X = 500 mm (see also figure 7) .  
The integrated amplitude of Ivifl increases by a factor of 5.3 over the same distance. 
The amplification rate of Ivifl is almost identically equal to the square of the 
amplification ratio of I v ; ~ ,  suggesting that lufIZf is generated by the first-order 
nonlinear interaction. A similar observation can be made with respect to the 
streamwise component of the fluctuation in the region 200 < X < 400 mm since, in 
this case, the integral of 

(iii) The distribution of 1w’12f and I u ’ ~ ~ ~  across the flow is not well predicted by the 
linear stability eigenfunction. 

attains its maximum a t  X = 400 mm (figure 8c ) .  

5.2. The Jirst transition subregion 
The first transition subregion (500 < X < 640 mm) is defined as the region in which 
dB/dX changes from its constant positive value in region I to a constant negative 
value in region 11. A local maximum of the momentum thickness is attained a t  
X = 560 mm, where the overall turbulent energy production vanishes (figure S a ) ,  the 
integrated intensity of the transverse fluctuations 1~1‘1 attains a maximum, and the 
integral of lull has a local minimum (figure 8 b ) .  The end of this transition subregion 
corresponds to a minimum in the overall turbulent production ( X  = 640 mm). A 
second maximum of the integrated streamwise component of the fluctuations also 
occurs a t  X = 640 mm (figure 8b)  stemming from a favourable phase relationship 
between lu;l and luifl since none has a maximum a t  this location (figure 8 c ) .  

The distributions of -ufd and (--u’v’), as well as the corresponding energy 
production terms, are almost equal in this subregion (figure lo), as might have been 
expected from figure 8 ( a ) .  Consequently, the flow continues to be dominated by the 
excitation frequency. The Reynolds stresses and the concomitant production terms 
change sign to become negative. The change is initially observed on the high-velocity 
side of the flow and is associated with the increased inclination of the large vortices 
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FIGURE 1 1 .  As figure 9 but at X = 640 mm. 
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FIGURE 12. As figure 9 but  at X = 780 mm. 

200 
F(Hz) 

0 F(Hz) 200 

(see Ho & Huerre 1984, figures 20 and 21) resulting from the comparatively larger 
phase velocity in this region (see figures 4 and 5 in GKW). 

The first harmonic of the cross-spectrum, which has an amplitude comparable with 
the amplitude of the imposed frequency, changes its sign first, and the fundamental 
frequency follows (figure 11).  The interaction between the imposed fluctuations and 
their first harmonic frequency appears to be the dominant factor responsible for the 
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FIGURE 13. As hgure Y but at A = Y40 mm. 

contraction of the mixing layer with downstream distance. The harmonic distortion 
of the longitudinal and the lateral velocity components diminishes in this region, 
particularly on the high-velocity side of the flow. It is interesting to note that the 
integral across the flow of IuJ is amplified between X = 520 mm and X = 700 mm, 
while the corresponding integral of Iv;I diminishes (figure 8 c ) .  The integral of 
decreases steeply in this region. 

5.3. Kegion 11 

In  region I1 (640 < X < 840 mm), the momentum thickness of the mixing layer 
decreases. The overall energy production is negative (figure S a ) ,  and the inclination 
angle of the vortices on the high-speed side of the flow decreases. The phase-locked 
oscillations still dominate the flow (figure 12) and the phase-locked energy production 
throughout the region is negative (figure 8a). The cross-stream integrals of luJ, 
luifl, Iv;I, and Id I also decrease (figure 8 c ) .  

The flow in this region appears to be dominated by the large vortices which are 
perfectly locked to the phase of the flap motion (see also Oster et d .  1978). Although 
the products of u’o’dl7/dY and of (u’v’) dO/dY are negative throughout, suggesting 
that energy is lost by the large eddies to the mean motion, the integral SEP, (u‘Jdy 
hardly diminishes between 660 < X < 800 mm (figure 8 b )  while the integrated 
harmonic component of 1u;J and Iv;,l diminishes greatly over the corresponding 
distance. The harmonic distortion of u’, which is 0.5 a t  X = 440 mm and 
( Y  - YJ/6 = 2, is reduced to 0.05 a t  a corresponding lateral location a t  S = 840 mm. 
The second harmonic (F = 3 f ), which is significant in region I (figures 9 and lo), 
disappears completely in region 11, and most of the random fluctuations are shifted 
toward frequencies that are lower than the excitation frequency (figures 12 and 13). 
At X = 200 mm, the background spectral distribution of d2 in the range between 0 
and 200 Hz is flat, while the spectrum of d2 slopes upward toward higher frequencies. 

Zf. 
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FIGURE 14. As figure 9 but  at X = 1500 mm. 

At S = 560 mm, the spectrum of d2 still has a broad-band maximum around the first 
harmonic frequency 2 f .  At X = 780 mm, this maximum shifts toward the excitation 
frequency and remains there until the end of region I1 (figure 12). The cross-spectrum 
has two negative peaks a t  the excitation frequency and a t  its first harmonic between 
600 < X < 840 mm. The relative importance of the first harmonic of the (-u’d) 
product decreases with increasing X, in this region, until i t  vanishes across the entire 
mixing layer a t  S = 840 mm; the (-u’zi’) product at the excitation frequency 
becomes negative at X = 600 mm and remains negative until X = 900 mm. 

5.4. The second transition region 

The transition from region I1 to 111 (840 < S < 1080 mm) is marked by a renewed 
growth of the momentum thickness with increasing X and a positive overall 
production of turbulent energy. In this region, one may observe that the phase- 
locked (u’v’) product and the associated production of fluctuating energy deviate 
significantly from the time-averaged - u’vf product and overall energy production 
(figure 13). While the overall production is positive, the phase-locked production of 
energy is negligibly small (figure 8a) .  Positive values do appear in the phase-locked 
( -u’zi’) product in the central region of the mixing layer, but their influence is offset 
by the negative values a t  the peripheries. Positive peaks in the cross-spectra 
appear in both the disturbance frequency and its first harmonic in the vicinity of 
(Y- &)/O = 0 (figure 13). 

The spectral distributions of d2 and d2 do not change appreciably between 
880 < S < 1080 mm; the harmonic distortion coefficient remains constant, and the 
background turbulence in the spectrum of the transverse fluctuations has a broad- 
band maximum around the excitation frequency. Since the momentum thickness in 
this region is snialler than the maximum B attained a t  the end of region I, one could 
argue that the mixing layer returns to being linearly unstable to the excitation 
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FIGURE 15. The transverse distributions of phase-locked and temporally averaged Reynolds 
stress at eight streamwise locations. 

frequency. This is unlikely, in spite of the reappearance of positive phase-locked 
(-u’v’), because the integrals 

I(U‘)fl dY and I<V’>fl dY 

are decreasing in this region while J-“, I(u’)vldy increase. The increase of the 
amplitudes of the transverse fluctuations a t  the harmonic frequency cannot be 
attributed to a linear process but rather to a nonlinear interaction among the 
energetic eddies produced by the excitation. One may also recall that  the mean 
velocity profile changes its shape in this region (figure 3). 

5.5. Region 111 
In region I11 (X > 1080 mm), the mixing layer resumes its linear rate of spread with 
S. The growth rate in this case is approximately one-quarter of the growth rate in 
region I. The overall energy production in this region is positive everywhere 
(figure 8a) ,  and the -u‘v‘ profiles are positive (figure 14). On the other hand, the 
phase-locked ( - u’v’) distributions are negative in this region and, consequently, the 
integral of ( -u’v’) dU/dY is negative (figure 8a) .  The positive turbulence 
production stems from a broad-band, slightly positive - u’v’ product appearing at  
low frequencies and overwhelming, in the integral sense, the strong, negative cross- 
spectral peaks occurring a t  the excitation frequency (figure 14). The intensity of the 
phase-locked fluctuations a t  the harmonic frequency decreases with downstream 
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distance for X > 1100 mm ; only the lowest frequencies in the background increase 
between 1000 < X < 1700 mm (cf. figures 13 and 14). 

The distributions ofu’v’ a t  8 different streamwise locations are plotted in figure 15 
as a challenge to potential modellers of this flow. 

One may conclude that eddies which are larger than the eddies associated with the 
excitation frequency become dominant in region 111. These eddies, which are not 
locked in-phase to the imposed oscillations, are presumably responsible for the 
resumed growth of the shear layer. The integrated intensity of the transverse 
fluctuabions decreases in region 111, while the integrated intensity of Ju‘I across the 
flow increases for X > 1500 mm. At X = 1800 mm, the integrated phase-locked 
fluctuations are reduced to 50 % of the corresponding temporally averaged intensities 
(figure 86). 

5.6. The subharmonic frequency 
Anticipating that the resumed growth of the mixing layer in region I11 stems from 
vortex pairing, special attention was paid to this process and to the generation of the 
subharmonic frequencies. Since the large eddies passing through region I1 were 
locked to the phase of the excitation, it was assumed that the pairing process would 
follow suit and, therefore, the phase-averaging was done a t  the subharmonic 
frequency (see also $2). A comparison between the data phase-locked to the 
excitation signal, or to its subharmonic, could not be distinguished, suggesting that 
the process, if it exists, occurs randomly in time or space. Power spectra of ur2 and 
v ’ ~  and the cross-spectrum of u’d reveal interesting exchanges between the excitation 
frequency and its harmonic component (F  = 2f) in regions I and I1 and a good 
portion of region 111 (up to X = 1300 mm), but they do not show a clear dominance 
of a subharmonic frequency (F  = f / S )  as was initially anticipated (figure 14). Com- 
paring the d2 spectrum shown in figure 12 (taken a t  X = 780 mm and ( Y  - YJ/O = 2) 
with a corresponding spectrum in figure 14 ( X  = 1500 mm), one notices: 

(i) the disappearance of peaks a t  the harmonic frequency a t  X = 1500 mm; 
(ii) the disappearance of the side bands (i.e. the broadening of the spectrum) near 

(iii) a significant increase (by an order of magnitude) of the background level of all 
the excitation frequency; and 

frequencies that are lower than the excitation frequency. 

6. Streaklines and vorticity distribution 
One of the objectives of this work was to compare streaklines computed from the 

two components of the measured phase-locked velocity with conventional flow 
visualization techniques. Such a comparison can provide a link between qualitative 
observations and quantitative data and may serve as a tool for analysing the 
dynamic significance of ‘pairing’ which was first observed by Winant & Browand 
(1974), who injected dye into the flow. 

A comparison between a streakline pattern and a smoke picture is presented in 
figure 16, and the resemblance between the two is obvious. I n  order to take the 
photograph, a smoke filament was introduced near the trailing edge of the splitter 
plate while the test section was illuminated by a stroboscope synchronized with the 
frequency of the flap. The exposure time was 0.8 s and, therefore, the photograph 
represents a phase-locked superposition of 36 events. The data used for calculating 
streaklines were also used for calculating the velocity and vorticity fields, the 
distribution of Reynolds stresses, and the exchange of energy between the mean 
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FIGURE 16. The phase-locked structures : ( a )  smoke-illuminated stroboscopically 
(exposure time = 0.8 s) ; ( b )  calculated streaklines; (c) calculated isodynes. 
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FIGURE 17. The phase-locked structures in region I: (a)  calculated streaklines; 
( b )  calculated isodynes. 
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FIGURE 18. The phase-locked structures in region 11: ( a )  calculated streaklines ; 
( b )  calculated isodynes. 

motion and the large coherent structures. The corresponding phase-locked vorticity 
field is also presented in figure 16. 

A detailed comparison between the measured vorticity contours and the 
concomitant streaklines in each of the regions discussed is shown in figures 17-19. 

The vorticity in region I is concentrated in two cores, displaced both longitudinally 
and laterally (figure 17). The longitudinal displacement of these cores diminishes 
with increasing distance from the flap until it vanishes at the beginning of region 11, 
forming a circular lump. The two cores of vorticity within the circular lump retain 
their identity for some time (450 < X < 600 mm) before merging completely into a 
single vortex a t  X x 600 mm (figures 17 and 18). The isodynes in region I1 have a 
single core with a maximum vorticity a t  its centre. Two cores of the phase-locked 
vorticity contours reappear in the second transition region (900 < X < 1100 mm) 
and in region I11 near the end of the test section (X x 1600 mm). The regeneration 
of the two cores in the second transition region coincides with a positive contribution 
to the cross-spectrum of the fluctuations a t  the fundamental and the harmonic 
frequency. The vorticity between the cores is stretched by the large vortex lumps and 
virtually disappears a t  X x 700 mm (figures 16 and 18). 

The vorticity distribution in regions I and 11 is consistent with the linear stability 
theory as discussed in $4 (see also Michalke 1964, 1965). Even the disappearance of 
the local minimum, while the flow becomes stable to the excitation frequency, 
corresponds to the lateral location a t  which U" = 0 and was explained by Michalke 
(see figures 17 and 18). The concentration of the perturbation vorticity in region I11 
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FIGURE 19. The phase-locked structures in region 111 : ( a )  calculated streaklines ; ( b )  calculated 
isodynes. 

decreases with increasing X (figure 19), indicating the limitation of the inviscid linear 
assumption. 

The streaklines shown in figure 17 suggest that region I, which is marked by a 
rapid growth of the shear layer, can be characterized by the amplification of 
disturbances in the lateral direction. I ts  length is equal to the distance required for 
the vortex sheet to roll into a single lumpy structure. A lump (or patch) is formed a t  
the cross-section a t  which the streakline pattern folds over backward. 

The lateral dimension of the vortex lumps in region I1 remains unchanged (figures 
17 and 18), but their inclination to the flow axis is reduced. The inclination of the 
major axis of the lumps is larger than in in region I ; it crosses in at the beginning 
of region I1 and becomes smaller with increasing S. The inclination angle of the large 
vortices is related to the sign of the Reynolds stress as suggested by Browand & Ho 
(1983). The thin vortex sheet which separates adjacent lumps, and sometimes is 
referred to as the ‘braid’, is stretched in the process, as can be seen from the 
calculated streaklines. 

Neither the phase-locked streaklines, nor the photographs produced by strobo- 
scopic or by single-flash illumination, showed the occurrence of pairing in this 
experiment. Many single exposure photographs were taken in order to verify that 
the stroboscopic illumination used (figure 16) did not suppress the appearance of 
‘pairing’ interactions which might have occurred randomly in time relative to the 
phase of the flap. These observations spurred an extensive investigation which is 
discussed separately (Wygnanski & Weisbrot 1988). 
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7. Conclusions 
The transverse distributions of the phase-locked fluctuations are well predicted by 

the linear stability model in spite of the high amplitudes involved. The model fails 
to predict accurately the rate of amplification of these disturbances in the direction 
of streaming and, therefore, a weakly nonlinear perturbation scheme which modifies 
the rate of amplification with X while retaining the normalized shape of the 
eigenfunctions may correct these deficiencies (Wygnanski, Marasali & Champagne 
1987). 

The formation of a significant subharmonic frequency was not observed even in 
region 111, where the width of the shear layer exceeds the wavelength associated with 
the excitation. On the other hand, the first harmonic frequency was prominent in 
regions I and 11, and there was a continuous exchange of energy between the 
harmonic and the fundamental throughout these two regions. This process is most 
clearly observed in the cross-spectra and suggests that  a resonance of the Kelly 
(1967) type may occur between the fundamental frequency and the first harmonic, 
rather than between the fundamental and its subharmonic. 

Conventional techniques of flow visualization did not reveal the existence of 
'pairing' or other modes of vortex amalgamation in the present experiment. 

The authors wish to express their gratitude to Dr M. Gaster, who introduced them 
to the linear stability approach in this case, and to Dr E. Kit for his continuous 
assistance in the experimental work. The work was supported in part by the AFOSR 
under Grant No. 83-0235. 
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